Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Cool, dusty interstellar material plays an important role in the chemical evolution of galaxies. We present an analysis of this material across galaxy type through a spatially resolved spectral stacking analysis of galaxies from the MaNGA survey. With stellar population synthesis, we isolate neutral gas signals from resonance lines, comparing outcomes across model types, galactic geometry, and host stellar mass and age. We find that both synthetic and empirical models fail to capture the range of galactic chemical abundances. There is also notable Naicontamination from the Galaxy’s interstellar medium (ISM) in the MILES empirical stellar library. We are unable to reliably determine the column density of the gas due to the accuracy of absorption measurements, but differential analysis across radius and inclination reveals consistent and significant path-length dependent absorption in the equivalent width of Nai. We note similar but lesser trends in a narrow Caiiindex. We find no trends in Caior in a broad Caiiindex, indicating its ISM insensitivity and providing evidence in favor of its utility in determining the age and chemical content of stellar populations. Our data shows there is a cool ISM component in most external galaxies withDn(4000) < 1.7 that can be traced by Nai. Lastly, we caution that the characterization of gas kinematics traced by Naiin such low-resolution spectra is subject to systematic effects due to the chosen approach to stellar population modeling.more » « lessFree, publicly-accessible full text available March 21, 2026
-
Abstract Although it is well established that some extragalactic radio sources are time-variable, the properties of this radio variability, and its connection with host galaxy properties, remain to be explored—particularly for faint sources. Here we present an analysis of radio variable sources from the CHILES Variable and Explosive Radio Dynamic Evolution Survey (CHILES VERDES)—a partner project of the 1.4 GHz COSMOS H i Large Extragalactic Survey. CHILES VERDES provides an unprecedented combination of survey depth, duration, and cadence, with 960 hr of 1–2 GHz continuum VLA data obtained over 209 epochs between 2013 and 2019 in a 0.44 deg 2 section of the well-studied extragalactic deep field, COSMOS. We identified 18 moderate-variability sources (showing 10%–30% flux density variation) and 40 lower-variability sources (2%–10% flux density variation). They are mainly active galactic nuclei (AGNs) with radio luminosities in the range of 10 22 –10 27 W Hz −1 , based on cross-matching with COSMOS multiwavelength catalogs. The moderate-variability sources span redshifts z = 0.22–1.56, have mostly flat radio spectra ( α > −0.5), and vary on timescales ranging from days to years. The lower-variability sources have similar properties, but generally have higher radio luminosities than the moderate-variability sources, extending to z = 2.8, and have steeper radio spectra ( α < −0.5). No star-forming galaxy showed statistically significant variability in our analysis. The observed variability likely originates from scintillation on short (∼week) timescales, and Doppler-boosted intrinsic AGN variability on long (month–year) timescales.more » « less
-
The NSF-sponsored Undergraduate ALFALFA (Arecibo Legacy Fast ALFA) Team (UAT) is a consortium of 20 institutions across the US and Puerto Rico, founded to promote undergraduate research and faculty development within the extragalactic ALFALFA HI blind survey project and follow-up programs. The objective of the UAT is to provide opportunities for its members to develop expertise in the technical aspects of observational radio spectroscopy, its associated data analysis, and the motivating science. Partnering with Arecibo Observatory, the UAT has worked with more than 280 undergraduates and 26 faculty to date, offering 8 workshops onsite at Arecibo (148 undergraduates), observing runs at Arecibo (69 undergraduates), remote observing runs on campus, undergraduate research projects based on Arecibo science (120 academic year and 185 summer projects), and presentation of results at national meetings such as the AAS (at AAS229: Ball et al., Collova et al., Davis et al., Miazzo et al., Ruvolo et al, Singer et al., Cannon et al., Craig et al., Koopmann et al., O'Donoghue et al.). 40% of the students and 45% of the faculty participants have been women and members of underrepresented groups. More than 90% of student alumni are attending graduate school and/or pursuing a career in STEM. 42% of those pursuing graduate degrees in Physics or Astronomy are women.In this presentation, we summarize the UAT program and the current research efforts of UAT members based on Arecibo science, including multiwavelength followup observations of ALFALFA sources, the UAT Collaborative Groups Project, the Survey of HI in Extremely Low-mass Dwarfs (SHIELD), and the Arecibo Pisces-Perseus Supercluster Survey (APPSS). This work has been supported by NSF grants AST-0724918/0902211, AST-075267/0903394, AST-0725380, AST-121105, and AST-1637339.more » « less
-
The NSF-sponsored Undergraduate ALFALFA (Arecibo Legacy Fast ALFA) Team (UAT) is a consortium of 20 institutions across the US and Puerto Rico, founded to promote undergraduate research and faculty development within the extragalactic ALFALFA HI blind survey project and follow-up programs. The objective of the UAT is to provide opportunities for its members to develop expertise in the technical aspects of observational radio spectroscopy, its associated data analysis, and the motivating science. Partnering with Arecibo Observatory, the UAT has worked with more than 280 undergraduates and 26 faculty to date, offering 8 workshops onsite at Arecibo (148 undergraduates), observing runs at Arecibo (69 undergraduates), remote observing runs on campus, undergraduate research projects based on Arecibo science (120 academic year and 185 summer projects), and presentation of results at national meetings such as the AAS (at AAS229: Ball et al., Collova et al., Davis et al., Miazzo et al., Ruvolo et al, Singer et al., Cannon et al., Craig et al., Koopmann et al., O'Donoghue et al.). 40% of the students and 45% of the faculty participants have been women and members of underrepresented groups. More than 90% of student alumni are attending graduate school and/or pursuing a career in STEM. 42% of those pursuing graduate degrees in Physics or Astronomy are women.In this presentation, we summarize the UAT program and the current research efforts of UAT members based on Arecibo science, including multiwavelength followup observations of ALFALFA sources, the UAT Collaborative Groups Project, the Survey of HI in Extremely Low-mass Dwarfs (SHIELD), and the Arecibo Pisces-Perseus Supercluster Survey (APPSS). This work has been supported by NSF grants AST-0724918/0902211, AST-075267/0903394, AST-0725380, AST-121105, and AST-1637339.more » « less
An official website of the United States government

Full Text Available